We have compiled a list of manufacturers, distributors, product information, reference prices, and rankings for Simulation Software.
ipros is IPROS GMS IPROS One of the largest technical database sites in Japan that collects information on.

Simulation Software(cae) - List of Manufacturers, Suppliers, Companies and Products

Simulation Software Product List

1~15 item / All 35 items

Displayed results

Concept To Reality Summer 2011

We are focusing on optimization using high-performance computing.

Altea Engineering publishes the information magazine "Concept to Reality (C2R) JAPAN." "Concept to Reality (C2R) JAPAN" includes fully translated articles from the U.S. headquarters' "Concept to Reality," as well as unique information on technology, products, and events in Japan, delivered twice a year. The "Concept To Reality Summer 2011" issue features articles such as "Streamlining Aircraft Door Development with Simulation," "Analyzing Bird Strikes," "Supporting Space Payload Launches with Structural Optimization," and "Behind the Scenes at NASA's Supercomputing Center." For more details, please contact us or refer to the catalog.

  • Image analysis software

Added to bookmarks

Bookmarks list

Bookmark has been removed

Bookmarks list

You can't add any more bookmarks

By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.

Free membership registration

[Data] Conceptual Design of the Althea Vehicle Body Frame Structure

Introducing conceptual design utilizing simulation and AI technology!

This document presents the conceptual design of our vehicle body frame structure utilizing simulation and AI technology. We introduce the generative design of the body frame "C123 Process" and the high-speed calculation of vehicle characteristics using AI, "physicsAI." Additionally, we cover the designer CAE "SimSolid," which utilizes meshless analysis. [Contents] ■ Generative design of the body frame "C123 Process" ■ Semi-automatic creation of C2 models from detailed FEM models in HyperAutomation ■ High-speed calculation of vehicle characteristics using AI - physicsAI ■ Designer CAE utilizing meshless analysis - SimSolid ■ Various simulation technologies supporting the practical use of mega casting ■ Altair's AI technology adopted by automotive companies worldwide *For more details, please download the PDF or feel free to contact us.

  • Other information systems

Added to bookmarks

Bookmarks list

Bookmark has been removed

Bookmarks list

You can't add any more bookmarks

By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.

Free membership registration

Collaboration between CAESES and OpenFOAM in Blade Shape Optimization

Introduction to parameter control of script files and optimization execution during OpenFOAM integration!

This article focuses on the software connection in the shape optimization process using OpenFOAM and CAESES. The application targeted is a propeller blade, and the connection between external software and CAESES can be established quickly, allowing for the rapid initiation of automatic optimization and design considerations for the blade. The collaboration between CAESES and OpenFOAM has been utilized in various cases, and tutorials and sample files are available within CAESES. This collaborative system using open-source software is highly efficient and can greatly benefit from optimization calculations. *For more detailed information, please refer to the related links. For further details, you can download the PDF or feel free to contact us.*

  • ブレード形状最適化におけるCAESESとOpenFOAMの連携2.png
  • ブレード形状最適化におけるCAESESとOpenFOAMの連携3.png
  • ブレード形状最適化におけるCAESESとOpenFOAMの連携4.png
  • ブレード形状最適化におけるCAESESとOpenFOAMの連携5.png
  • ブレード形状最適化におけるCAESESとOpenFOAMの連携7.png
  • Other analyses
  • Image analysis software

Added to bookmarks

Bookmarks list

Bookmark has been removed

Bookmarks list

You can't add any more bookmarks

By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.

Free membership registration

Parametric model of twin-skeg boats in CAESES

It is possible to flexibly control various parts related to hull characteristics!

We will introduce the parametric model of a twin-skeg vessel created by FRIENDSHIP SYSTEMS, the developer of the CAD + optimization software CAESES. In cases where the shape is symmetrical, only half of the hull is typically modeled. With CAESES, it is possible to robustly construct a model that incorporates the deformations anticipated by the user. *For more detailed information, please refer to the related links. For further details, you can download the PDF or feel free to contact us.

  • ツインスケグ船のパラメトリックモデル2.png
  • ツインスケグ船のパラメトリックモデル3.gif
  • Other analyses
  • Other CAD

Added to bookmarks

Bookmarks list

Bookmark has been removed

Bookmarks list

You can't add any more bookmarks

By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.

Free membership registration

Propeller design for efoil using CAESES

Here is a brief introduction to the design of the propeller included with the foil board!

Do you all know about "efoil"? An efoil is an electric foil board that allows you to experience the sensation of flying above the water. Here, we will introduce some aspects of the propeller design that comes with the foil board, as discussed by a CAESES user with FRIENDSHIP SYSTEMS, the developer of CAESES. *You can view the detailed content of the article through the related links. For more information, please download the PDF or feel free to contact us.*

  • efoilのプロペラ設計2.png
  • Other analyses
  • 3D Printer

Added to bookmarks

Bookmarks list

Bookmark has been removed

Bookmarks list

You can't add any more bookmarks

By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.

Free membership registration

Optimization of axial fans using TCFD and CAESES.

The goal of the optimization calculation is to maximize fan efficiency at specific flow rates and increase airflow!

In this case, we will introduce the automatic optimization workflow for axial fan rotor blades developed by CFDSupport, the creator of TCAE, and FRIENDSHIP SYSTEMS, the creator of CAESES. The project began in response to requests from designers and manufacturers who have basic designs for axial fans and wish to improve existing products into more optimal shapes. *For detailed content of the article, you can view it through the related links. For more information, please download the PDF or feel free to contact us.*

  • TCFDとCAESESを用いた軸流ファンの最適化2.png
  • TCFDとCAESESを用いた軸流ファンの最適化3.png
  • TCFDとCAESESを用いた軸流ファンの最適化4.png
  • TCFDとCAESESを用いた軸流ファンの最適化5.png
  • Structural Analysis
  • fan
  • Other analysis software

Added to bookmarks

Bookmarks list

Bookmark has been removed

Bookmarks list

You can't add any more bookmarks

By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.

Free membership registration

Optimization of drone propeller shape

Providing the right products to customers! Introducing the benefits and applications of CAESES at Parrot.

The French company Parrot, which specializes in the design and development of drones, uses CAESES for the design of drone propellers. The reason Parrot's engineers, who are experts in the drone market, adopted CAESES is to speed up the design process and provide customers with even more suitable products. Here, we will introduce the benefits and applications of CAESES at Parrot. *For detailed information, you can view the related links. For more details, please download the PDF or feel free to contact us.*

  • ドローンのプロペラ形状の最適化2.png
  • ドローンのプロペラ形状の最適化3.png
  • ドローンのプロペラ形状の最適化4.png
  • ドローンのプロペラ形状の最適化5.gif
  • Structural Analysis
  • Software (middle, driver, security, etc.)

Added to bookmarks

Bookmarks list

Bookmark has been removed

Bookmarks list

You can't add any more bookmarks

By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.

Free membership registration

Collaboration feature of CONVERGE and CAESES using the intake port.

Supporting development design operations! Introducing features that can be effectively utilized.

The optimization calculation software CAESES and the thermal fluid analysis software CONVERGE work together as a collaborative optimization system aimed at shape optimization and investigating the effects of design variables, providing support to engineers in the design and development field. In this article, we will introduce the functions that can be effectively utilized in CAESES when collaborating with CONVERGE, using intake port models and piston models. *For detailed content of the article, please refer to the related links. For more information, feel free to download the PDF or contact us.

  • 11-2.png
  • 11-3.png
  • 11-4.png
  • 11-5.png
  • 11-6.gif
  • Other analysis software

Added to bookmarks

Bookmarks list

Bookmark has been removed

Bookmarks list

You can't add any more bookmarks

By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.

Free membership registration

Optimization of Marine Propeller Blade Shape Using OpenFOAM

The blades used for calculations can be created using the "Generic Blade" feature of CAESES.

One of the advantages of CAESES is its optimization design through an automation system connected to CFD software. This article introduces the blade shape optimization of marine propellers using OpenFOAM and CAESES, which is currently in use. In CAESES, in addition to methods for designing parametric 2D and 3D models, it is also possible to connect with various external software. *For more details, you can view the related links. For further information, please download the PDF or feel free to contact us.*

  • 6377102696005262328629436.png
  • 6377102709000600286261130.png
  • 6377102733181822253651802.png
  • 6377102792644412105023850.png
  • 6377102940461506159267580.png
  • Software (middle, driver, security, etc.)
  • Other analyses

Added to bookmarks

Bookmarks list

Bookmark has been removed

Bookmarks list

You can't add any more bookmarks

By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.

Free membership registration

Optimization of catalytic converter performance using CAESES.

Optimization of the duct of the catalytic converter using CAESES!

Designing engine components for automobiles often involves considering many constraints, making it a challenging task within development design work. One example is the duct located just before the catalytic converter. Due to space constraints, this component is often designed to be bent quite sharply, which makes it difficult to ensure that the flow distribution is sufficiently uniform. In other words, if the flow characteristics of the catalytic converter are poor, there is a possibility that performance will decrease and emissions will increase. In this case, optimization of the duct for the catalytic converter will be performed using CAESES. *For more details, please refer to the related links. For further information, feel free to download the PDF or contact us.*

  • 6385803935833329694682380.gif
  • 9-2.png
  • 6385803976342704737924415.gif
  • 9.png
  • Other analysis software

Added to bookmarks

Bookmarks list

Bookmark has been removed

Bookmarks list

You can't add any more bookmarks

By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.

Free membership registration

Automatic Optimization using Adjoint Flow Solvers

It is possible to efficiently obtain optimal candidate geometry that can be directly supplied to the downstream CAD design process!

At FRIENDSHIP SYSTEMS, the developer of the CAD and optimization software CAESES, automatic optimization calculations were performed based on the shape sensitivity calculated by Adjoint Flow Solvers. The open-source optimization toolkit Dakota, integrated into CAESES, provides optimization methods that can directly accept gradient information obtained by combining shape sensitivity with CAD model parameters as input data. Based on this information, the algorithm selects parameters for design candidates created by CAESES, and calculations are performed using Adjoint Flow Solvers. *For more detailed information, please refer to the related links. For further details, you can download the PDF or feel free to contact us.*

  • 3-2.png
  • 3-3.png
  • 3-4.png
  • Other analysis software

Added to bookmarks

Bookmarks list

Bookmark has been removed

Bookmarks list

You can't add any more bookmarks

By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.

Free membership registration

Optimization Case of Centrifugal Compressor Impeller Using CAESES

By constructing a parametric model, it is also possible to optimize the entire compressor model!

Centrifugal compressors are compact yet feature a high pressure ratio, and they are widely used in systems in the fields of aircraft and marine vessels. Impeller design is a crucial design aspect of centrifugal compressors and has a significant impact on compressor performance. In this case, we conducted automatic performance optimization using CAESES combined with CFD tools on an existing centrifugal compressor impeller model. *For more detailed information, please refer to the related links. For further details, you can download the PDF or feel free to contact us.*

  • CAESESによる遠心圧縮機インペラの最適化事例2.png
  • CAESESによる遠心圧縮機インペラの最適化事例3.png
  • CAESESによる遠心圧縮機インペラの最適化事例4.png
  • CAESESによる遠心圧縮機インペラの最適化事例7.gif
  • CAESESによる遠心圧縮機インペラの最適化事例8.gif
  • CAESESによる遠心圧縮機インペラの最適化事例9.gif
  • CAESESによる遠心圧縮機インペラの最適化事例10.gif
  • Centrifugal concentrator

Added to bookmarks

Bookmarks list

Bookmark has been removed

Bookmarks list

You can't add any more bookmarks

By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.

Free membership registration

Reduction of CO2 emissions through hull shape optimization.

Introducing how much the annual CO2 emissions have been reduced by utilizing CAESES!

FRIENDSHIP SYSTEMS, the developer of CAESES, has contributed to the reduction of energy consumption and CO2 emissions not only through support for the improvement of turbo machinery and engine-related parts but also for vessels. This article will introduce the experiences in design and improvement for CO2 emission reduction and how much annual CO2 emissions have been reduced by utilizing CAESES. *For detailed content of the article, please refer to the related link. For more information, feel free to download the PDF or contact us.

  • 船体形状最適化によるCO2排出量の削減2.png
  • 船体形状最適化によるCO2排出量の削減3.jpg
  • Other analyses
  • Modeler

Added to bookmarks

Bookmarks list

Bookmark has been removed

Bookmarks list

You can't add any more bookmarks

By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.

Free membership registration

Design of a centrifugal water pump

Implementing the design process of a centrifugal water pump that maximally utilizes the capabilities of CAESES!

Centrifugal pumps are commonly used in industrial and household applications because their design, manufacturing, and maintenance are relatively simple. They also have the advantage of being efficient and easily adaptable to various sizes. Students from the Department of Transportation Systems at the Technical University of Berlin implemented the design process of a centrifugal water pump that maximizes the capabilities of CAESES as part of an internship project at FRIENDSHIP SYSTEMS, the developer of CAESES. *For more details, you can view the related links. For further information, please download the PDF or feel free to contact us.*

  • 遠心式ウォーターポンプの設計2.png
  • 遠心式ウォーターポンプの設計3.png
  • 遠心式ウォーターポンプの設計4.png
  • Structural Analysis
  • Other pumps

Added to bookmarks

Bookmarks list

Bookmark has been removed

Bookmarks list

You can't add any more bookmarks

By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.

Free membership registration

Optimization of the rear wing shape

Utilizing CAESES for the optimization of the rear wing shape attached to racing cars!

FRIENDSHIP SYSTEMS, the developer of CAESES, has actively supported student racing teams such as FaSTTUBe and the Ryerson Formula Racing Team. Among these, CAESES was utilized for the optimization of the rear wing shape of racing cars in the Formula Student Germany (FSG) contest, which gathers students from all over Germany. This case study will introduce the optimization of the rear wing and its results. *For more detailed information, please refer to the related links. For further inquiries, feel free to download the PDF or contact us.*

  • 9-2.png
  • 9-3.gif
  • 9-4.png
  • 9-5.png
  • 9-6.png
  • 9-7.png
  • Other analysis software

Added to bookmarks

Bookmarks list

Bookmark has been removed

Bookmarks list

You can't add any more bookmarks

By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.

Free membership registration